Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2761: 477-490, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427256

RESUMO

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has a direct impact on the dopaminergic neurons in the substantia nigra pars compacta (SNpc), dopamine in the striatum (ST), homovanillic acid (HVA), neurotrophic factors of the SNpc, and ST regions leading to Parkinson's disease (PD). Dopaminergic neuron atrophy in the SNpc and dopamine degradation in the ST have an explicit link to disrupted homeostasis of the neurotrophic factor brain-derived neurotrophic factor (BDNF) of the SNpc and ST regions. Chrysin is a flavonoid with a pharmacological potential that directly influences neurotrophic levels as well as neurotransmitters. As a result, analysis of the altering levels of neurotransmitters such as dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), are observed via high-performance liquid chromatography (HPLC) and the confirmation of the influential role of BDNF and glial-derived neurotrophic factor (GDNF) in the homeostasis of dopamine, DOPAC, and HAV via examination of gene expression. The observation confirmed that chrysin balances the altering levels of neurotransmitters as well as neurotrophic factors. The protocols for reverse transcription-polymerase chain reaction (RT-PCR) and HPLC analysis for neurotransmitter levels from the SNpc and ST regions of acute PD mice brain-induced MPTP are described in this chapter.


Assuntos
Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Dopamina/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ácido Homovanílico/metabolismo , Substância Negra/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Flavonoides/farmacologia , Flavonoides/metabolismo , Corpo Estriado/metabolismo , Neurotransmissores/metabolismo , Camundongos Endogâmicos C57BL , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Tirosina 3-Mono-Oxigenase/metabolismo
2.
Int J Biol Macromol ; 254(Pt 2): 127904, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939770

RESUMO

Nanomaterials are emerging facts used to deliver therapeutic agents in living systems. Nanotechnology is used as a compliment by implementing different kinds of nanotechnological applications such as nano-porous structures, functionalized nanomaterials, quantum dots, carbon nanomaterials, and polymeric nanostructures. The applications are in the initial stage, which led to achieving several diagnoses and therapy in clinical practice. This review conveys the importance of nanomaterials in post-genomic employment, which includes the design of immunosensors, immune assays, and drug delivery. In this view, genomics is a molecular tool containing large databases that are useful in choosing an apt molecular inhibitor such as drug, ligand and antibody target in the drug delivery process. This study identifies the expression of genes and proteins in analysis and classification of diseases. Experimentally, the study analyses the design of a disease model. In particular, drug delivery is a boon area to treat cancer. The identified drugs enter different phase trails (Trails I, II, and III). The genomic information conveys more essential entities to the phase I trials and helps to move further for other trails such as trails-II and III. In such cases, the biomarkers play a crucial role by monitoring the unique pathological process. Genetic engineering with recombinant DNA techniques can be employed to develop genetically engineered disease models. Delivering drugs in a specific area is one of the challenging issues achieved using nanoparticles. Therefore, genomics is considered as a vast molecular tool to identify drugs in personalized medicine for cancer therapy.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Neoplasias , Humanos , Técnicas Biossensoriais/métodos , Imunoensaio , Nanoestruturas/uso terapêutico , Nanoestruturas/química , Nanotecnologia/métodos , Preparações Farmacêuticas , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico
3.
Bioresour Technol ; 367: 128215, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36332858

RESUMO

Carotenoids are naturally occurring pigments that are widely distributed in algae, fungi, bacteria, and plants. Carotenoids play a significant role in the food, feed, cosmetic, nutraceutical, and pharmaceutical industries. These pigments are effectively considered as a health-promoting compounds, which are widely used in our daily diet to reduce the risk of chronic diseases such as cardiovascular diseases, cancer, acute lung injury, cataracts, neural disorders, etc. In this context, this review paper demonstrates the synthesis of carotenoids and their potential application in the food and pharmaceutical industries. However, the demand for carotenoid production is increasing overtime, and the extraction and production are expensive and technically challenging. The recent developments in carotenoid biosynthesis, and key challenges, bottlenecks, and future perspectives were also discussed to enhance the circular bioeconomy.


Assuntos
Carotenoides , Fungos , Bactérias , Plantas , Suplementos Nutricionais
4.
Plants (Basel) ; 13(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38202421

RESUMO

Driven by a surge in global interest in natural products, macroalgae or seaweed, has emerged as a prime source for nutraceuticals and pharmaceutical applications. Characterized by remarkable genetic diversity and a crucial role in marine ecosystems, these organisms offer not only substantial nutritional value in proteins, fibers, vitamins, and minerals, but also a diverse array of bioactive molecules with promising pharmaceutical properties. Furthermore, macroalgae produce approximately 80% of the oxygen in the atmosphere, highlighting their ecological significance. The unique combination of nutritional and bioactive attributes positions macroalgae as an ideal resource for food and medicine in various regions worldwide. This comprehensive review consolidates the latest advancements in the field, elucidating the potential applications of macroalgae in developing nutraceuticals and therapeutics. The review emphasizes the pivotal role of omics approaches in deepening our understanding of macroalgae's physiological and molecular characteristics. By highlighting the importance of omics, this review also advocates for continued exploration and utilization of these extraordinary marine organisms in diverse domains, including drug discovery, functional foods, and other industrial applications. The multifaceted potential of macroalgae warrants further research and development to unlock their full benefits and contribute to advancing global health and sustainable industries.

5.
Neurol Sci ; 42(11): 4459-4469, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34480241

RESUMO

Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder that affects 1% of the population worldwide. Etiology of PD is likely to be multi-factorial such as protein misfolding, mitochondrial dysfunction, oxidative stress, and neuroinflammation that contributes to the pathology of Parkinson's disease (PD), numerous studies have shown that mitochondrial dysfunction may play a key role in the dopaminergic neuronal loss. In multiple ways, the two most important are the activation of neuroinflammation and mitochondrial dysfunction, while mitochondrial dysfunction could cause neuroinflammation and vice versa. Thus, the mitochondrial proteins are the highly promising target for the development of PD. However, the limited amount of dopaminergic neurons prevented the detailed investigation of Parkinson's disease with regard to mitochondrial dysfunction. Both genetic and environmental factors are also associated with mitochondrial dysfunction and PD pathogenesis. The induction of PD by neurotoxins that inhibit mitochondrial complex I provide direct evidence linking mitochondrial dysfunction to PD. A decrease of mitochondrial complex I activity is observed in PD brain and in neurotoxin- or genetic factor-induced in vitro and in vivo models. Moreover, PINK1, Parkin, DJ-1 and LRRK2 mitochondrial PD gene products have important roles in mitophagy, a cellular process that clear damaged mitochondria. This review paper would discuss the evidence for the mitochondrial dysfunction and neuroinflammation in PD.


Assuntos
Doença de Parkinson , Neurônios Dopaminérgicos , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Estresse Oxidativo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo
6.
Neurosci Lett ; 709: 134382, 2019 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-31325581

RESUMO

Parkinson disease occurs due to the depletion of dopaminergic neurons in brain resulting in decreased dopamine level and abnormal protein aggregation. Chrysin is a flavonoid which possesses pharmacological properties against various diseases like hypertension, diabetes, cancer, etc. According to the recent literatures, it is evidenced that chrysin protects mice against Focal Cerebral Ischemia/Reperfusion Injury. The present study aimed to elucidate the effect of chrysin on neuronal restoration in MPTP intoxicated acute mice model. From the results, it is revealed that the pre-treatment with chrysin protected MPTP induced degeneration of nigra-striatal neurons. It is observed that chrysin also ameliorates MPTP induced oxidative stress in mice by upregulating GSH, SOD and downregulating LPO levels. The motor dysfunction is also found to be enhanced which was evidenced through Beam walk, Horizontal grid and vertical grid tests. Pre-treatment with chrysin also averted MPTP induced alterations in neurotrophic factors, inflammatory markers and Dopamine contents. The findings of the present study clearly indicated that the chrysin reversed the neurochemical deficits, oxidative stress and behavioral abnormalities in PD mice and offers promising strategy for the treatment of neurodegenerative diseases.


Assuntos
Flavonoides/uso terapêutico , Intoxicação por MPTP/tratamento farmacológico , Intoxicação por MPTP/metabolismo , Fatores de Crescimento Neural/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Doença Aguda , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Relação Dose-Resposta a Droga , Flavonoides/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Intoxicação por MPTP/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/fisiologia
7.
Int J Neurosci ; 129(6): 534-539, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30433834

RESUMO

BACKGROUND: Parkinson's disease is the most common neurodegenerative disorder, characterized by loss of dopaminergic neurons in substantia nigra and depletion of dopamine in striatum due to excitotoxicity, oxidative stress and many other factors may contribute to MPTP- and PD-related neurodegeneration. The present study deals with the neuroprotective effect of Naringenin (NGN), a bioflavonoid against MPTP-induced Parkinson's disease in the mouse model. METHODS: Healthy male C57BL/6J mice (18-22 g b wt) were pretreated with NGN [25, 50, 100 mg/kg/b.wt, p.o] once daily for 5 days. Thereafter, 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) (80 mg/kg b.wt, i.p) was given in two divided doses (2 × 40 mg/kg at 16 h interval). The animals were observed for motor functions 48 h after the first MPTP injection. After completion of behaviour tasks, all animals were euthanized to dissect out the brain and used for biochemical, molecular and histopathological investigations. RESULTS: Pretreatment of NGN significantly reversed the toxic effects of MPTP by reducing LPO levels and increasing the activities of glutathione reductase and catalase along with improved behavioural performance. Interestingly, pre-treatment with NGN down-regulated iNOS expression level in MPTP intoxicated mice brain. In addition, the histopathological evaluation revealed that NGN decreased the nuclear pigmentation and cytoplasmic vacuolation in the substantia nigra and striatal regions when compared to MPTP-intoxicated mice brain. DISCUSSION: The present study showed that NGN exerts neuroprotection by suppressing oxidative stress via antioxidant mechanisms. The above finding suggests that NGN may act as a potential target in the management of PD.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Flavanonas/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson Secundária/prevenção & controle , Animais , Catalase/biossíntese , Corpo Estriado/patologia , Relação Dose-Resposta a Droga , Glutationa Redutase/biossíntese , Masculino , Camundongos , Óxido Nítrico Sintase Tipo II/biossíntese , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson Secundária/patologia , Substância Negra/patologia
8.
Neurotox Res ; 33(3): 656-670, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29427283

RESUMO

The present study was designed to ascertain the role of naringenin (NGN), a citrus fruit flavanone, against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced α-synuclein (SYN) pathology and neuroinflammation in a mouse model. NGN was administered to C57BL/6J mice once a day for 5 consecutive days prior to the MPTP intoxication. On day 5, 40-50 min after the NGN or vehicle administration, MPTP was injected in two divided doses (2× 40 mg/kg, i.p. at 16 h apart). The animals were observed for motor functions 48 h after the first MPTP injection. The animals were then euthanized, the brains collected to analyze SYN pathology, cytokines, and oxidative stress levels in the substantia nigra region. The NGN significantly downregulated SYN and upregulated dopamine transporter (DAT) and tyrosine hydroxylase (TH) protein expressions. It also downregulated tumor necrosis factor-α (TNFα) and interleukin 1ß (IL1ß) mRNA expressions and improved superoxide dismutase levels. It also reduced glutathione levels when compared to vehicle-treated PD animals. The upregulation of TH corroborates to an increase in dopamine, DOPAC, and homovanillic acid turnover and motor functions with NGN treatment. To summarize, NGN, a dietary flavone, has the potential to counteract MPTP-induced dopaminergic degeneration by regulating SYN pathology, neuroinflammation, and oxidative stress. This warrants the investigation of NGN's potential effects in a genetic model of PD.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Anti-Inflamatórios/uso terapêutico , Encefalite/etiologia , Flavanonas/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Doença de Parkinson , alfa-Sinucleína/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Glutationa/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Força Muscular/efeitos dos fármacos , Neurotransmissores/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , RNA Mensageiro/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
9.
IET Nanobiotechnol ; 10(5): 288-294, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27676376

RESUMO

The biosynthesis of silver nanoparticles (AgNPs) has been proved to be a cost effective and environmental friendly approach toward chemical and physical methods. In the present study, biosynthesis of AgNPs was carried out using aqueous extract of Zea mays (Zm) husk. The initial colour change from golden yellow to orange was observed between 410 and 450 nm which confirmed the synthesis of AgNPs. Also, dynamic light scattering-particle size analysis confirmed the average size to be 113 nm and zeta potential value of -28 kV. The morphology of synthesised ZmAgNPs displayed flower-shaped structure, X-ray diffraction pattern revealed the strongest peaks at 2θ = 38.6° and 64° which proved that the nanoparticle has the face centred crystalline structure. The Fourier transform infrared spectroscopy results showed strong absorption bands at 1394.53, 2980.02 and 2980.02 cm-1 due to the presence of alkynes, carboxylic acids, alcoholic and phenolic groups. The maximum zone of inhibition was observed against Salmonella typhi (22 mm) and Candida albicans (18 mm). The synthesised nanoparticles exhibited more free radical scavenging activity than the aqueous plant extract. This is the first report on the synthesis of AgNP from Zm husk, delivers the efficient and stable ZmAgNPs through simple feasible approach toward green biotechnology.

10.
Biochem Res Int ; 2015: 765190, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26451255

RESUMO

Laccases are the model enzymes for multicopper oxidases and participate in several applications such as bioremediation, biopulping, textile, and food industries. Laccase producing bacterium, Bacillus subtilis MTCC 2414, was subjected to optimization by conventional techniques and was partially purified using ammonium salt precipitation method. The agroresidue substrates used for higher yield of laccase were rice bran and wheat bran. Maximum production was achieved at temperature 30°C (270 ± 2.78 U/mL), pH 7.0 (345 ± 3.14 U/mL), and 96 h (267 ± 2.64 U/mL) of incubation. The carbon and nitrogen sources resulted in high enzyme yield at 3% sucrose (275 ± 3.11 U/mL) and 3% peptone (352.2 ± 4.32 U/mL) for rice bran and 3% sucrose (247.4 ± 3.51 U/mL) and 3% peptone (328 ± 3.33 U/mL) for wheat bran, respectively. The molecular weights of partially purified laccase were 52 kDa for rice bran and 55 kDa for wheat bran. The laccase exhibited optimal activity at 70°C (260.3 ± 6.15 U/mL), pH 9.0 (266 ± 4.02 U/mL), and metal ion CuSO4 (141.4 ± 6.64) was found to increase the production. This is the first report that delivers the higher yield of laccase produced from B. subtilis MTCC 2414 using agroresidues as a potential substrate.

11.
Asian Pac J Trop Med ; 5(3): 210-3, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22305786

RESUMO

OBJECTIVE: To detect in vitro biofilm formation of uropathogenic Escherichia coli (E. coli) (UPEC) strains isolated from urine specimens and also to determine their antimicrobial susceptibility pattern using 13 commonly used antibiotics. METHODS: The present study comprised of 166 urine specimens collected from tertiary care hospitals in and around Coimbatore, South India. All the specimens were subjected to gram staining, bacterial culture and the E. coli strains were screened for biofilm formation using Tube Method (TM), Congo Red Agar (CRA) and Tissue Culture Plate method (TCP) respectively. Subsequently, the antimicrobial susceptibility test was performed by Kirby Bauer-disk diffusion method for the biofilm and non-biofilm producing E. coli strains. RESULTS: Of the 100 (60.2 %) E. coli strains, 72 strains displayed a biofilm positive phenotype under the optimized conditions in the Tube Method and the strains were classified as highly positive (17, 23.6%), moderate positive (19, 26.3 %) and weakly positive (36, 50.0 %), similarly under the optimized conditions on Congo Red agar medium, biofilm positive phenotype strains were classified as highly positive (23, 23 %), moderate positive (37, 37 %) and weakly positive (40, 40%). While in TCP method, the biofilm positive phenotype strains were also classified as highly positive (6, 6 %), moderate positive (80, 80 %) and weakly positive (14, 14 %), it didn't not correlate well with the tube method for detecting biofilm formation in E. coli. The rates of antibiotic resistance of biofilm producing E. coli were found to be 100 % for chloramphenicol and amoxyclav (amoxicillin and clavulanic acid), 86% for gentamicin and cefotaxime, 84% for ceftazidime, 83% for cotrimoxazole and piperacillin/tazobactam, 75% for tetracycline and 70% for amikacin. CONCLUSIONS: This study reveals the prevalence and antimicrobial susceptibility pattern of biofilm and non-biofilm producing uropathogenic E. coli strains.


Assuntos
Antibacterianos/farmacologia , Biofilmes , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções Urinárias/tratamento farmacológico , Escherichia coli Uropatogênica/fisiologia , Infecções por Escherichia coli/urina , Humanos , Testes de Sensibilidade Microbiana , Fenótipo , Infecções Urinárias/urina , Escherichia coli Uropatogênica/efeitos dos fármacos
12.
Int J Microbiol ; 2011: 605195, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22164164

RESUMO

Pseudomonas aeruginosa is an invasive organism that frequently causes severe tissue damage in diabetic foot ulcers. A major problem in P. aeruginosa infection may be that this pathogen exhibits a high degree of resistance to a broad spectrum of antibiotics. The study aimed to isolate and determine the antimicrobial susceptibility patterns of the P. aeruginosa population from diabetes patients with foot ulcers attending tertiary care hospitals in and around Coimbatore and their antimicrobial susceptibility pattern. The study was carried out at the Department of Microbiology, Dr. N.G.P. Arts and Science College, Coimbatore, for a period of one year (June 2006 to April 2007). The present study comprised 270 pus specimens collected from diabetic patients with foot ulcers. All pus samples were subjected to gram staining; bacterial culture and subsequently the antibiotic sensitivity to 15 different antibiotics for the confirmed P. aeruginosa were performed as per the standard procedures. Eighteen strains (14.28%) of P. aeruginosa from 270 diabetic foot ulcers were detected. Almost all the strains exhibited a varying degree of resistance to the antibiotics tested. Multidrug resistance for about 8 to 11 antibiotics was observed among the 55.5% of the isolates. Disk diffusion results show 100% resistance to ampicillin, cefoperazone, erythromycin, norfloxacin, and only cefotaxime, ciprofloxacin exhibited greater activity against Pseudomonas aeruginosa.

13.
Bioinformation ; 6(10): 375-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21904424

RESUMO

Clostridium perfringens (a versatile pathogenic bacterium) secretes enterotoxins (the deltatoxin, virulent factor) and causes food borne gastroenteritis and gasgangrene. The organism was isolated and characterized from improperly cooked meat and poultry samples. The isolated organism showed multiple drug resistance indicating that the treatment is challenging. Hence, there is need for improved therapeutic agents. The rational design of improved therapeutics requires the crystal structure for the toxin. However, the structure for the toxin is not yet available in its native form. Thus, we modeled the toxin structure using α- hemolysin of Staphylococcus aureus (PDB: 3M4D chain A) as template. The docking of the toxin with the herbal extract curcumin (1,7-bis(4-hydroxy-3- methoxyphenyl)hepta-1,6-diene-3,5-dione) showed a binding energy of -8.6 Kcal/mol, in comparison to the known antibiotic Linezolid with binding energy of -6.1 Kcal/mol. This data finds application in the design and development of novel compounds against the deltatoxin from Clostridium perfringens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...